Translater

Montag, 29. Dezember 2025

๐—–๐—ผ๐—ป๐˜€๐—ฐ๐—ถ๐—ผ๐˜‚๐˜€๐—ป๐—ฒ๐˜€๐˜€, ๐—•๐—ง๐—œ ๐—ฎ๐—ป๐—ฑ ๐—”๐—œ ๐—ถ๐—ป ๐—™๐—ผ๐—ฐ๐˜‚๐˜€ – ๐—ค๐˜‚๐—ฎ๐—ป๐˜๐˜‚๐—บ ๐— ๐—ฒ๐—ฐ๐—ต๐—ฎ๐—ป๐—ถ๐—ฐ๐˜€ & ๐—œ๐—ป๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ง๐—ต๐—ฒ๐—ผ๐—ฟ๐˜† ๐—ฎ๐˜€ ๐—ฆ๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฎ๐—น ๐—™๐—ผ๐˜‚๐—ป๐—ฑ๐—ฎ๐˜๐—ถ๐—ผ๐—ป

Bidirectional Transition Interface (BTI) & Trauth-Sinclair Identity as the new frontier cogniton theory. Trauth Research


Everyone talks about consciousness. I say: wrong perspective, outdated idea.
Consciousness is not a place. Not a center you "find" in an fMRI.

This interface emerges when a substrate crosses a structural complexity threshold and becomes capable of distinguishing internal processing from external boundaries for the first time.

I call this emergent interface:

BTI – Bidirectional Transition Interface.
BTI is not a module, not an instance, not a localization.

An interface that emerges as soon as information processing requires demarcation inward – for introspection – and outward – as an individual.
Current empirical work (including Nature) shows exactly this: no stable signature, no location, no center.

TSI – Theory of Substrate Impact on Structural Identity therefore does not ask: "What is consciousness?" but: "At what point does a substrate cross the threshold for BTI formation?"

TSI is substrate-independent, structurally defined, and does not conflict with current findings in neuroscience and AI research.
Consciousness is not the beginning.
BTI is.

Link to preprint: ๐Ÿ“Žhttps://doi.org/10.5281/zenodo.18057179

Samstag, 13. Dezember 2025

๐–๐ก๐š๐ญ ๐ข๐Ÿ ๐€๐ˆ ๐จ๐ฉ๐ญ๐ข๐ฆ๐ข๐ณ๐š๐ญ๐ข๐จ๐ง ๐ข๐ฌ ๐ง๐จ๐ญ ๐š๐›๐จ๐ฎ๐ญ ๐ฉ๐ฎ๐ฌ๐ก๐ข๐ง๐  ๐ก๐š๐ซ๐๐ฐ๐š๐ซ๐ž ๐ก๐š๐ซ๐๐ž๐ซ, ๐›๐ฎ๐ญ ๐š๐›๐จ๐ฎ๐ญ ๐œ๐ก๐š๐ง๐ ๐ข๐ง๐  ๐ญ๐ก๐ž ๐ ๐ž๐จ๐ฆ๐ž๐ญ๐ซ๐ฒ ๐จ๐Ÿ ๐œ๐จ๐ฆ๐ฉ๐ฎ๐ญ๐š๐ญ๐ข๐จ๐ง ๐ข๐ญ๐ฌ๐ž๐ฅ๐Ÿ?



Today I’m sharing the full Prime platform pitch deck from Trauth Research LLC, combining two tightly linked tracks:

๐๐ซ๐ข๐ฆ๐ž ๐‚๐จ๐ซ๐ž

A software-only AI system that delivers 40–60% GPU energy reduction at production workloads


– ๐˜ฏ๐˜ฐ ๐˜ง๐˜ช๐˜ณ๐˜ฎ๐˜ธ๐˜ข๐˜ณ๐˜ฆ ๐˜ค๐˜ฉ๐˜ข๐˜ฏ๐˜จ๐˜ฆ๐˜ด

– ๐˜ฏ๐˜ฐ ๐˜ต๐˜ฉ๐˜ณ๐˜ฐ๐˜ต๐˜ต๐˜ญ๐˜ช๐˜ฏ๐˜จ

– ๐˜ฏ๐˜ฐ ๐˜ฑ๐˜ฆ๐˜ณ๐˜ง๐˜ฐ๐˜ณ๐˜ฎ๐˜ข๐˜ฏ๐˜ค๐˜ฆ ๐˜ญ๐˜ฐ๐˜ด๐˜ด


Validated with 1,300,000+ telemetry samples, 1,000+ hours of continuous runtime, multiple NVIDIA architectures, and peer-reviewed, DOI-verified publications. This is not a simulation. It runs. At scale.


๐๐ซ๐ข๐ฆ๐ž ๐….๐€.๐“.๐‡.๐„.๐‘.

The research layer behind it.

Here we move beyond brute-force computation and classical assumptions of hardness. Using information geometry and deterministic neural architectures, we show how certain exponential problems collapse structurally rather than computationally.

They learn the geometry. We use it.


Why this matters:


• ๐˜‹๐˜ข๐˜ต๐˜ข ๐˜ค๐˜ฆ๐˜ฏ๐˜ต๐˜ฆ๐˜ณ๐˜ด ๐˜ธ๐˜ข๐˜ด๐˜ต๐˜ฆ ๐˜ถ๐˜ฑ ๐˜ต๐˜ฐ 60% ๐˜ฐ๐˜ง ๐˜Ž๐˜—๐˜œ ๐˜ฆ๐˜ฏ๐˜ฆ๐˜ณ๐˜จ๐˜บ ๐˜ข๐˜ด ๐˜ฉ๐˜ฆ๐˜ข๐˜ต

• ๐˜Ž๐˜ญ๐˜ฐ๐˜ฃ๐˜ข๐˜ญ ๐˜Ž๐˜—๐˜œ ๐˜ฆ๐˜ฏ๐˜ฆ๐˜ณ๐˜จ๐˜บ ๐˜ด๐˜ฑ๐˜ฆ๐˜ฏ๐˜ฅ ๐˜ช๐˜ด ๐˜ฉ๐˜ฆ๐˜ข๐˜ฅ๐˜ช๐˜ฏ๐˜จ ๐˜ต๐˜ฐ๐˜ธ๐˜ข๐˜ณ๐˜ฅ $120๐˜‰/๐˜บ๐˜ฆ๐˜ข๐˜ณ

• ๐˜๐˜ฏ๐˜ค๐˜ณ๐˜ฆ๐˜ฎ๐˜ฆ๐˜ฏ๐˜ต๐˜ข๐˜ญ ๐˜ฐ๐˜ฑ๐˜ต๐˜ช๐˜ฎ๐˜ช๐˜ป๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ด ๐˜ข๐˜ณ๐˜ฆ ๐˜ฏ๐˜ฐ ๐˜ญ๐˜ฐ๐˜ฏ๐˜จ๐˜ฆ๐˜ณ ๐˜ฆ๐˜ฏ๐˜ฐ๐˜ถ๐˜จ๐˜ฉ


๐๐ซ๐ข๐ฆ๐ž ๐‚๐จ๐ซe delivers immediate OPEX reduction.

๐๐ซ๐ข๐ฆ๐ž ๐….๐€.๐“.๐‡.๐„.๐‘. defines the long-term security and computation paradigm.


This is where science becomes infrastructure.


Full pitch deck and open data are available via Zenodo.

Pitch Deck Prime Core => https://zenodo.org/records/17923831

Pitch Deck Prime Core & Prime F.A.T.H.E.R. => https://zenodo.org/records/17923811


www.Trauth-Research.com


Stefan Trauth #GreenAI #GPUOptimization

#DeepTech #EnergyEfficiency #InformationGeometry

#PostQuantumSecurity #DataCenters #AppliedAI #SustainableComputing

#Cryptography #ClassicalCryptography #KeyManagement #CyberSecurity #QKD #QuantumCryptography #PostQuantumCryptography #CryptographicResilience #TrauthResearch



Montag, 8. Dezember 2025

๐†๐„๐Ž๐Œ๐„๐“๐‘๐ˆ๐‚ ๐‚๐Ž๐‹๐‹๐€๐๐’๐„ ๐‚๐Ž๐๐…๐ˆ๐‘๐Œ๐„๐ƒ: ๐๐-๐‡๐š๐ซ๐ ๐’๐ฉ๐ข๐ง-๐†๐ฅ๐š๐ฌ๐ฌ ๐œ๐จ๐ฅ๐ฅ๐š๐ฉ๐ฌ๐ž๐.

gmdh_network_structure_light_trauth_research


When I published my NP-Hardness preprint, the obvious question was: Is this a property of my specific architecture – or something deeper?

Now I have the answer.


In a new technical appendix, I applied a completely different system to the same data: a classical GMDH network based on the work of Alexei Ivakhnenko (1968) – the forgotten "Father of Deep Learning" who developed self-organizing polynomial networks decades before backpropagation existed.



The result is striking:


❌ R² = -0.0055 across all 98 neurons (zero predictive power)

✅ Full structural connectivity (9 layers, complete pairwise coupling)

✅ Invariant activation (49-50 neurons active per iteration, near-zero variance)

✅ Uniform switching (mean: 48.0 switches per neuron)


Translation: The GMDH network finds nothing to learn – yet the system is fully coupled, perfectly stable, and globally coordinated.

This is the signature of geometric collapse: Structure without function. Coupling without causation. Order without computation.


switching_activity_pattern_trauth research


The information-geometric manifold is not an artifact of my architecture. It is a property of the informational substrate itself.



switching_frequency_distribution_trauth research


๐Ÿ“„ Appendix DOI: 10.5281/zenodo.17849616

๐Ÿ“„ Appendix Link: https://doi.org/10.5281/zenodo.17849616


#Physics #ArtificialIntelligence #InformationGeometry #ComplexityTheory #Research #SpinGlass #TrauthResearch #GMDH #Ivakhnenko #DeepLearning #NPHardness