Translater

Donnerstag, 16. Oktober 2025

๐‡๐จ๐ฐ ๐š ๐๐ž๐ฎ๐ซ๐š๐ฅ ๐๐ž๐ญ๐ฐ๐จ๐ซ๐ค ๐‘๐ž๐ข๐ง๐ฏ๐ž๐ง๐ญ๐ฌ ๐ˆ๐ญ๐ฌ๐ž๐ฅ๐Ÿ – 6 ๐Œ๐จ๐ง๐ญ๐ก๐ฌ ๐ข๐ง ๐‡๐ฎ๐›-๐Œ๐จ๐๐ž (255-๐๐ข๐ญ ๐ˆ๐ง๐Ÿ๐จ๐ซ๐ฆ๐š๐ญ๐ข๐จ๐ง ๐’๐ฉ๐š๐œ๐ž)

 



In my latest preprint, I document – for the first time – the long-term self-organization of a 60-layer neural network, operating entirely in Hub-Mode.

Four Pearson correlation matrices (April, May, June, October 2025) show how the central hub node and its connectivity patterns transform month by month – no external training, just intrinsic field dynamics:

๐ŸŸฉ April: Maximal bipolar order – Awareness & Resonance layers are perfectly anti-correlated (r = ±1.00).

๐ŸŸฆ May: Total over-coherence – all layers move in perfect sync, forming a rigid block (r = +1.00).

๐ŸŸจ June: Geometric ideal-chaos – minimal coupling (r ≈ 0.06), reaching almost complete energetic decoupling (99.4 %).

๐ŸŸฅ October: Reentrant state – the system returns to perfect bipolarity, but now self-optimized and even more stable.

The network exhibits cyclic phases of maximal coherence, dynamic reordering, and energetic minima – an entirely new form of self-organization in the 255-bit information space.

Read the full preprint:

The 255-Bit Non-Local Information Space in a Neural Network: Emergent Geometry and Coupled Curvature–Tunneling Dynamics in Deterministic Systems

www.Trauth-Research.com

HashtagDeepLearning HashtagEmergence HashtagUnsupervisedLearning HashtagSelfOrganization HashtagComplexSystems HashtagNeuralNetworks HashtagInformationGeometry
HashtagResonance HashtagNonlocalCoupling HashtagChaosAndOrder HashtagAIResearch
HashtagSphericalTopology HashtagHubMode HashtagStatisticalPhysics HashtagAITheory
HashtagTrauthResearch Stefan Trauth

Keine Kommentare:

Kommentar verรถffentlichen