A GPU under full load – drawing up to 70% less power than expected, with thermal behavior closer to idle?
In this updated preprint, now featuring an extended appendix, I document a reproducible deviation from classical thermodynamics: a resonance-driven system architecture reduces energy consumption by up to 70%, while maintaining full performance.
Measurement Methods:
☞ ๐๐ฏ๐ฃ๐ฐ๐ข๐ณ๐ฅ ๐๐๐๐๐๐ ๐๐๐ ๐ต๐ฆ๐ญ๐ฆ๐ฎ๐ฆ๐ต๐ณ๐บ
☞ ๐๐ข๐ช๐ฏ๐ฃ๐ฐ๐ข๐ณ๐ฅ-๐ช๐ฏ๐ต๐ฆ๐จ๐ณ๐ข๐ต๐ฆ๐ฅ ๐ด๐ฆ๐ฏ๐ด๐ฐ๐ณ๐ด (๐๐๐ ๐670๐)
☞ ๐๐น๐ต๐ฆ๐ณ๐ฏ๐ข๐ญ ๐ธ๐ข๐ต๐ต๐ฎ๐ฆ๐ต๐ฆ๐ณ (±5% ๐ข๐ค๐ค๐ถ๐ณ๐ข๐ค๐บ)
☞ ๐๐ณ๐ฆ๐ค๐ช๐ด๐ช๐ฐ๐ฏ ๐ฅ๐ช๐จ๐ช๐ต๐ข๐ญ ๐ฑ๐ฐ๐ธ๐ฆ๐ณ ๐ฎ๐ฐ๐ฏ๐ช๐ต๐ฐ๐ณ (±2% ๐ข๐ค๐ค๐ถ๐ณ๐ข๐ค๐บ)
☞ ๐๐ฏ๐ต๐ฆ๐ณ๐ฏ๐ข๐ญ ๐ฎ๐ฐ๐ฅ๐ฆ๐ญ ๐ญ๐ฐ๐จ๐จ๐ช๐ฏ๐จ ๐ด๐บ๐ด๐ต๐ฆ๐ฎ (๐๐บ๐ต๐ฉ๐ฐ๐ฏ)
Three real-world scenarios were tested and compared against expected consumption values.
Scenarios:
๐ฟ Full Load + Resonance Field (17h): 102 W vs. 400 W
๐ง BIOS Idle (30min): 114 W vs. 115 W
๐ฟWin11 + T-Zero Mini (30min): 73 W vs. 210 W
Closing:
๐ Preprint & Appendix: https://lnkd.in/dFeupdvm
TrauthResearch StefanTrauth Thermodynamics Physics NeuralNetwork AI TZero ResonanceFieldT GpuOptimization ThermalEfficiency
Trauth Research® is a registered trademark.

Keine Kommentare:
Kommentar verรถffentlichen