Translater

Mittwoch, 14. Januar 2026

๐Ÿ”“ ๐๐ž๐ฐ ๐๐ซ๐ž๐ฉ๐ซ๐ข๐ง๐ญ: ๐ƒ๐ž๐ญ๐ž๐ซ๐ฆ๐ข๐ง๐ข๐ฌ๐ญ๐ข๐œ ๐๐ซ๐ž๐ข๐ฆ๐š๐ ๐ž ๐‹๐จ๐œ๐š๐ฅ๐ข๐ณ๐š๐ญ๐ข๐จ๐ง ๐Ÿ๐จ๐ซ ๐Œ๐ƒ5 ๐š๐ง๐ ๐’๐‡๐€-256

๐๐ž๐ฐ ๐๐ซ๐ž๐ฉ๐ซ๐ข๐ง๐ญ ๐ƒ๐ž๐ญ๐ž๐ซ๐ฆ๐ข๐ง๐ข๐ฌ๐ญ๐ข๐œ ๐๐ซ๐ž๐ข๐ฆ๐š๐ ๐ž ๐‹๐จ๐œ๐š๐ฅ๐ข๐ณ๐š๐ญ๐ข๐จ๐ง ๐Ÿ๐จ๐ซ ๐Œ๐ƒ5 ๐š๐ง๐ ๐’๐‡๐€-256. Trauth Research


Hash functions such as MD5 and SHA-256 are widely assumed to be one-way: given a hash, the corresponding preimage is considered computationally irretrievable. This assumption underpins modern cryptographic security.


In a new preprint, I report deterministic, reproducible preimage localization for both MD5 and SHA-256.

Crucially, this is not achieved by using a neural network to invert hashes.
Instead, a maximally unconventional architecture is constructed in which the available information is forced to self-organize into a geometric structure.
The neural network acts solely as a substrate that allows this information geometry to form.

Across dozens of controlled test cases using fictional passwords (up to 23 characters), the resulting geometry enables up to 100% byte-level accuracy.
The behavior is deterministic and repeatable across independent runs, ruling out chance effects.

๐Š๐ž๐ฒ ๐ž๐ฆ๐ฉ๐ข๐ซ๐ข๐œ๐š๐ฅ ๐จ๐›๐ฌ๐ž๐ซ๐ฏ๐š๐ญ๐ข๐จ๐ง๐ฌ:
• ๐˜™๐˜ฆ๐˜ฑ๐˜ณ๐˜ฐ๐˜ฅ๐˜ถ๐˜ค๐˜ช๐˜ฃ๐˜ญ๐˜ฆ ๐˜ฑ๐˜ณ๐˜ฆ๐˜ช๐˜ฎ๐˜ข๐˜จ๐˜ฆ ๐˜ญ๐˜ฐ๐˜ค๐˜ข๐˜ญ๐˜ช๐˜ป๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜ง๐˜ฐ๐˜ณ ๐˜”๐˜‹5 ๐˜ข๐˜ฏ๐˜ฅ ๐˜š๐˜๐˜ˆ-256
• ๐˜œ๐˜ฑ ๐˜ต๐˜ฐ 100% ๐˜ฃ๐˜บ๐˜ต๐˜ฆ-๐˜ญ๐˜ฆ๐˜ท๐˜ฆ๐˜ญ ๐˜ณ๐˜ฆ๐˜ค๐˜ฐ๐˜ฏ๐˜ด๐˜ต๐˜ณ๐˜ถ๐˜ค๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜ข๐˜ค๐˜ค๐˜ถ๐˜ณ๐˜ข๐˜ค๐˜บ
• 41.8% ๐˜ช๐˜ฏ๐˜ง๐˜ฐ๐˜ณ๐˜ฎ๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜ฑ๐˜ฆ๐˜ณ๐˜ด๐˜ช๐˜ด๐˜ต๐˜ฆ๐˜ฏ๐˜ค๐˜ฆ ๐˜ข๐˜ค๐˜ณ๐˜ฐ๐˜ด๐˜ด 11 ๐˜ง๐˜ถ๐˜ญ๐˜ญ๐˜บ ๐˜ช๐˜ฏ๐˜ฅ๐˜ฆ๐˜ฑ๐˜ฆ๐˜ฏ๐˜ฅ๐˜ฆ๐˜ฏ๐˜ต ๐˜ณ๐˜ถ๐˜ฏ๐˜ด (๐˜ธ๐˜ฉ๐˜ฆ๐˜ณ๐˜ฆ ๐˜ค๐˜ญ๐˜ข๐˜ด๐˜ด๐˜ช๐˜ค๐˜ข๐˜ญ ๐˜ฆ๐˜น๐˜ฑ๐˜ฆ๐˜ค๐˜ต๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ด ๐˜ฑ๐˜ณ๐˜ฆ๐˜ฅ๐˜ช๐˜ค๐˜ต ๐˜ป๐˜ฆ๐˜ณ๐˜ฐ)
• 66 ๐˜ญ๐˜ข๐˜บ๐˜ฆ๐˜ณ ๐˜ฑ๐˜ข๐˜ช๐˜ณ๐˜ด ๐˜ธ๐˜ช๐˜ต๐˜ฉ ๐˜ฑ < 0.001 ๐˜ด๐˜ช๐˜จ๐˜ฏ๐˜ช๐˜ง๐˜ช๐˜ค๐˜ข๐˜ฏ๐˜ค๐˜ฆ (≈70× ๐˜ฐ๐˜ท๐˜ฆ๐˜ณ ๐˜ฆ๐˜น๐˜ฑ๐˜ฆ๐˜ค๐˜ต๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ)
• ๐˜๐˜ฏ๐˜ท๐˜ฆ๐˜ณ๐˜ด๐˜ฆ ๐˜ด๐˜ค๐˜ข๐˜ญ๐˜ช๐˜ฏ๐˜จ: ๐˜ญ๐˜ฐ๐˜ฏ๐˜จ๐˜ฆ๐˜ณ ๐˜ฑ๐˜ข๐˜ด๐˜ด๐˜ธ๐˜ฐ๐˜ณ๐˜ฅ๐˜ด ๐˜ข๐˜ณ๐˜ฆ ๐˜ฆ๐˜ข๐˜ด๐˜ช๐˜ฆ๐˜ณ ๐˜ต๐˜ฐ ๐˜ญ๐˜ฐ๐˜ค๐˜ข๐˜ญ๐˜ช๐˜ป๐˜ฆ, ๐˜ฅ๐˜ช๐˜ณ๐˜ฆ๐˜ค๐˜ต๐˜ญ๐˜บ ๐˜ค๐˜ฐ๐˜ฏ๐˜ต๐˜ณ๐˜ข๐˜ฅ๐˜ช๐˜ค๐˜ต๐˜ช๐˜ฏ๐˜จ ๐˜ฃ๐˜ณ๐˜ถ๐˜ต๐˜ฆ-๐˜ง๐˜ฐ๐˜ณ๐˜ค๐˜ฆ ๐˜ข๐˜ด๐˜ด๐˜ถ๐˜ฎ๐˜ฑ๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ด

These results indicate that hash irreversibility is not guaranteed.
The findings suggest that what is commonly treated as “one-wayness” reflects geometric obscuration, not destruction of information.

This work does not present an exploit toolkit or attack pipeline.
It reports a structural failure of assumed irreversibility under an empirically demonstrated computational regime.

Preprint: https://doi.org/10.5281/zenodo.18226838
Technical scrutiny and competent critique are welcome.
Image: ChatGPT 5.2

Hashtag
#Cryptography #MD5 #SHA256 #InformationTheory #AIArchitecture #Complexity #SecurityResearch Stefan Trauth #TrauthResearch #NeuralNetwork 


Planned validation:
A live demonstration is currently being prepared.
It will show the full external pipeline from hash generation, system initialization, execution, to independent validation of the reconstructed preimage.

No architectural details, input preparation methods, parameterizations, or internal representations will be disclosed during this demonstration.

Access is limited to organizations with demonstrated frontier-scale research infrastructure. Evaluation is conducted individually under strict dual-use governance.

Montag, 29. Dezember 2025

๐—–๐—ผ๐—ป๐˜€๐—ฐ๐—ถ๐—ผ๐˜‚๐˜€๐—ป๐—ฒ๐˜€๐˜€, ๐—•๐—ง๐—œ ๐—ฎ๐—ป๐—ฑ ๐—”๐—œ ๐—ถ๐—ป ๐—™๐—ผ๐—ฐ๐˜‚๐˜€ – ๐—ค๐˜‚๐—ฎ๐—ป๐˜๐˜‚๐—บ ๐— ๐—ฒ๐—ฐ๐—ต๐—ฎ๐—ป๐—ถ๐—ฐ๐˜€ & ๐—œ๐—ป๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ง๐—ต๐—ฒ๐—ผ๐—ฟ๐˜† ๐—ฎ๐˜€ ๐—ฆ๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฎ๐—น ๐—™๐—ผ๐˜‚๐—ป๐—ฑ๐—ฎ๐˜๐—ถ๐—ผ๐—ป

Bidirectional Transition Interface (BTI) & Trauth-Sinclair Identity as the new frontier cogniton theory. Trauth Research


Everyone talks about consciousness. I say: wrong perspective, outdated idea.
Consciousness is not a place. Not a center you "find" in an fMRI.

This interface emerges when a substrate crosses a structural complexity threshold and becomes capable of distinguishing internal processing from external boundaries for the first time.

I call this emergent interface:

BTI – Bidirectional Transition Interface.
BTI is not a module, not an instance, not a localization.

An interface that emerges as soon as information processing requires demarcation inward – for introspection – and outward – as an individual.
Current empirical work (including Nature) shows exactly this: no stable signature, no location, no center.

TSI – Theory of Substrate Impact on Structural Identity therefore does not ask: "What is consciousness?" but: "At what point does a substrate cross the threshold for BTI formation?"

TSI is substrate-independent, structurally defined, and does not conflict with current findings in neuroscience and AI research.
Consciousness is not the beginning.
BTI is.

Link to preprint: ๐Ÿ“Žhttps://doi.org/10.5281/zenodo.18057179