Translater

Samstag, 13. Dezember 2025

๐–๐ก๐š๐ญ ๐ข๐Ÿ ๐€๐ˆ ๐จ๐ฉ๐ญ๐ข๐ฆ๐ข๐ณ๐š๐ญ๐ข๐จ๐ง ๐ข๐ฌ ๐ง๐จ๐ญ ๐š๐›๐จ๐ฎ๐ญ ๐ฉ๐ฎ๐ฌ๐ก๐ข๐ง๐  ๐ก๐š๐ซ๐๐ฐ๐š๐ซ๐ž ๐ก๐š๐ซ๐๐ž๐ซ, ๐›๐ฎ๐ญ ๐š๐›๐จ๐ฎ๐ญ ๐œ๐ก๐š๐ง๐ ๐ข๐ง๐  ๐ญ๐ก๐ž ๐ ๐ž๐จ๐ฆ๐ž๐ญ๐ซ๐ฒ ๐จ๐Ÿ ๐œ๐จ๐ฆ๐ฉ๐ฎ๐ญ๐š๐ญ๐ข๐จ๐ง ๐ข๐ญ๐ฌ๐ž๐ฅ๐Ÿ?



Today I’m sharing the full Prime platform pitch deck from Trauth Research LLC, combining two tightly linked tracks:

๐๐ซ๐ข๐ฆ๐ž ๐‚๐จ๐ซ๐ž

A software-only AI system that delivers 40–60% GPU energy reduction at production workloads


– ๐˜ฏ๐˜ฐ ๐˜ง๐˜ช๐˜ณ๐˜ฎ๐˜ธ๐˜ข๐˜ณ๐˜ฆ ๐˜ค๐˜ฉ๐˜ข๐˜ฏ๐˜จ๐˜ฆ๐˜ด

– ๐˜ฏ๐˜ฐ ๐˜ต๐˜ฉ๐˜ณ๐˜ฐ๐˜ต๐˜ต๐˜ญ๐˜ช๐˜ฏ๐˜จ

– ๐˜ฏ๐˜ฐ ๐˜ฑ๐˜ฆ๐˜ณ๐˜ง๐˜ฐ๐˜ณ๐˜ฎ๐˜ข๐˜ฏ๐˜ค๐˜ฆ ๐˜ญ๐˜ฐ๐˜ด๐˜ด


Validated with 1,300,000+ telemetry samples, 1,000+ hours of continuous runtime, multiple NVIDIA architectures, and peer-reviewed, DOI-verified publications. This is not a simulation. It runs. At scale.


๐๐ซ๐ข๐ฆ๐ž ๐….๐€.๐“.๐‡.๐„.๐‘.

The research layer behind it.

Here we move beyond brute-force computation and classical assumptions of hardness. Using information geometry and deterministic neural architectures, we show how certain exponential problems collapse structurally rather than computationally.

They learn the geometry. We use it.


Why this matters:


• ๐˜‹๐˜ข๐˜ต๐˜ข ๐˜ค๐˜ฆ๐˜ฏ๐˜ต๐˜ฆ๐˜ณ๐˜ด ๐˜ธ๐˜ข๐˜ด๐˜ต๐˜ฆ ๐˜ถ๐˜ฑ ๐˜ต๐˜ฐ 60% ๐˜ฐ๐˜ง ๐˜Ž๐˜—๐˜œ ๐˜ฆ๐˜ฏ๐˜ฆ๐˜ณ๐˜จ๐˜บ ๐˜ข๐˜ด ๐˜ฉ๐˜ฆ๐˜ข๐˜ต

• ๐˜Ž๐˜ญ๐˜ฐ๐˜ฃ๐˜ข๐˜ญ ๐˜Ž๐˜—๐˜œ ๐˜ฆ๐˜ฏ๐˜ฆ๐˜ณ๐˜จ๐˜บ ๐˜ด๐˜ฑ๐˜ฆ๐˜ฏ๐˜ฅ ๐˜ช๐˜ด ๐˜ฉ๐˜ฆ๐˜ข๐˜ฅ๐˜ช๐˜ฏ๐˜จ ๐˜ต๐˜ฐ๐˜ธ๐˜ข๐˜ณ๐˜ฅ $120๐˜‰/๐˜บ๐˜ฆ๐˜ข๐˜ณ

• ๐˜๐˜ฏ๐˜ค๐˜ณ๐˜ฆ๐˜ฎ๐˜ฆ๐˜ฏ๐˜ต๐˜ข๐˜ญ ๐˜ฐ๐˜ฑ๐˜ต๐˜ช๐˜ฎ๐˜ช๐˜ป๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ด ๐˜ข๐˜ณ๐˜ฆ ๐˜ฏ๐˜ฐ ๐˜ญ๐˜ฐ๐˜ฏ๐˜จ๐˜ฆ๐˜ณ ๐˜ฆ๐˜ฏ๐˜ฐ๐˜ถ๐˜จ๐˜ฉ


๐๐ซ๐ข๐ฆ๐ž ๐‚๐จ๐ซe delivers immediate OPEX reduction.

๐๐ซ๐ข๐ฆ๐ž ๐….๐€.๐“.๐‡.๐„.๐‘. defines the long-term security and computation paradigm.


This is where science becomes infrastructure.


Full pitch deck and open data are available via Zenodo.

Pitch Deck Prime Core => https://zenodo.org/records/17923831

Pitch Deck Prime Core & Prime F.A.T.H.E.R. => https://zenodo.org/records/17923811


www.Trauth-Research.com


Stefan Trauth #GreenAI #GPUOptimization

#DeepTech #EnergyEfficiency #InformationGeometry

#PostQuantumSecurity #DataCenters #AppliedAI #SustainableComputing

#Cryptography #ClassicalCryptography #KeyManagement #CyberSecurity #QKD #QuantumCryptography #PostQuantumCryptography #CryptographicResilience #TrauthResearch



Montag, 8. Dezember 2025

๐†๐„๐Ž๐Œ๐„๐“๐‘๐ˆ๐‚ ๐‚๐Ž๐‹๐‹๐€๐๐’๐„ ๐‚๐Ž๐๐…๐ˆ๐‘๐Œ๐„๐ƒ: ๐๐-๐‡๐š๐ซ๐ ๐’๐ฉ๐ข๐ง-๐†๐ฅ๐š๐ฌ๐ฌ ๐œ๐จ๐ฅ๐ฅ๐š๐ฉ๐ฌ๐ž๐.

gmdh_network_structure_light_trauth_research


When I published my NP-Hardness preprint, the obvious question was: Is this a property of my specific architecture – or something deeper?

Now I have the answer.


In a new technical appendix, I applied a completely different system to the same data: a classical GMDH network based on the work of Alexei Ivakhnenko (1968) – the forgotten "Father of Deep Learning" who developed self-organizing polynomial networks decades before backpropagation existed.



The result is striking:


❌ R² = -0.0055 across all 98 neurons (zero predictive power)

✅ Full structural connectivity (9 layers, complete pairwise coupling)

✅ Invariant activation (49-50 neurons active per iteration, near-zero variance)

✅ Uniform switching (mean: 48.0 switches per neuron)


Translation: The GMDH network finds nothing to learn – yet the system is fully coupled, perfectly stable, and globally coordinated.

This is the signature of geometric collapse: Structure without function. Coupling without causation. Order without computation.


switching_activity_pattern_trauth research


The information-geometric manifold is not an artifact of my architecture. It is a property of the informational substrate itself.



switching_frequency_distribution_trauth research


๐Ÿ“„ Appendix DOI: 10.5281/zenodo.17849616

๐Ÿ“„ Appendix Link: https://doi.org/10.5281/zenodo.17849616


#Physics #ArtificialIntelligence #InformationGeometry #ComplexityTheory #Research #SpinGlass #TrauthResearch #GMDH #Ivakhnenko #DeepLearning #NPHardness

Freitag, 5. Dezember 2025

๐๐-๐‡๐€๐‘๐ƒ๐๐„๐’๐’ ๐‚๐Ž๐‹๐‹๐€๐๐’๐„๐ƒ: ๐=100 ๐ข๐ง 90 ๐Œ๐ข๐ง๐ฎ๐ญ๐ž๐ฌ.

 


The P = NP problem is considered the Holy Grail of computer science. The dogmatic assumption: NP-hard problems require exponential search times.


My new data proves: The problem lies not in complexity, but in representation.

In my new preprint "NP-Hardness Collapsed: Deterministic Resolution of Spin-Glass Ground States via Information-Geometric Manifolds (Scaling from N=8 to N=100)" I demonstrate a mechanism that allows Spin-Glass state spaces to deterministically collapse.

The Performance Benchmark:

Total runtime for N=100: 90 minutes.



But here is the sensation: In this single 90-minute run, every intermediate solution from N=2 to N=100 was solved simultaneously.

The Facts:
✅ Speed: 90 Minutes for the full spectrum (N=2...100).
✅ Exactness: Deterministic verification, not probabilistic approximation.
✅ Scalability: Information-geometric field dynamics that encompass all sub-solutions instantly.


It needs no searching algorithms. It only needs information and geometry.

Anyone claiming I have 'solved P=NP' is arguing against a straw man; I am demonstrating that specific NP-hard representations can be bypassed geometrically.

As explicitly stated in my paper 'NP-Hardness Collapsed: Deterministic Resolution of Spin-Glass Ground States via Information-Geometric Manifolds' on Page 32: '๐˜›๐˜ฉ๐˜ช๐˜ด ๐˜ฅ๐˜ฐ๐˜ฆ๐˜ด ๐˜ฏ๐˜ฐ๐˜ต ๐˜ณ๐˜ฆ๐˜ด๐˜ฐ๐˜ญ๐˜ท๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜—=๐˜•๐˜— ๐˜ฑ๐˜ณ๐˜ฐ๐˜ฃ๐˜ญ๐˜ฆ๐˜ฎ...' – but it opens a perspective that may lead to a new understanding. Perhaps the P = NP or P ≠ NP question cannot be resolved in its classical formulation, but the underlying structure can be addressed geometrically.

Information is all it needs – geometry follows.

๐Ÿ“„ Read the Preprint here:

DOI:10.20944/preprints202512.0207.v2
Link: NP-Hardness Collapsed: Deterministic Resolution of Spin-Glass Ground States via Information-Geometric Manifolds (Scaling from N=8 to N=100)[v2] | Preprints.org

HashtagPhysics HashtagArtificialIntelligence HashtagInformationGeometry